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a b s t r a c t

The aim of this work was to investigate the applicability of non-destructive techniques in monitoring
freshness decay of fresh-cut Valerianella locusta L. during storage at different temperature. The sampling
was performed for 15 days for Valerianella samples preserved at 4 and 10 1C, and for 7 days for samples
stored at 20 1C. The quality decay of samples was evaluated by quality parameters (pH, water content,
total phenols, chlorophyll a fluorescence) and by non-destructive systems (electronic nose and visible–
near infrared spectroscopy).

Cluster Analysis (CA) was performed on quality indices and four clusters were identified, namely
“fresh”, “acceptable”, “spoiled” and “very spoiled”.

Principal Component Analysis (PCA) was applied on the electronic nose data in order to evaluate the
feasibility of this technique as a rapid and non-destructive approach for monitoring the freshness of
fresh-cut Valerianella during storage.

Linear Discriminant Analysis (LDA) and PLS-discriminant analysis (PLS-DA) models were developed
to test the performance of electronic nose and VIS–NIR, respectively, to classify samples in the four
classes of freshness. The average value of samples correctly classified using LDA was 95.5% and the cross
validation error rate was equal to 8.7%. The results obtained from PLS-DA models, in validation, gave
a positive predictive value (PPV) of classification between 74% and 96%.

Finally, predictive models were performed using Partial Least Squares (PLS) regression analysis
between quality indices and VIS–NIR data. RPD values o3 were obtained for water content and pH.
Excellent results were obtained for total phenols with Rcv

2 and RPD equal to 0.89 and 3.19, and for
chlorophyll a fluorescence with Rcv

2 and RPD equal to 0.92 and 3.22, respectively.
Results demonstrated that electronic nose and VIS–NIR are complementary techniques able to

support the conventional techniques in the shelf-life assessment of fresh-cut V. locusta L. providing
information useful for a better management of the product along the distribution chain.

& 2013 Elsevier B.V. All rights reserved.

1. Introduction

In recent decades, there has been a substantial increase in the
consumption of fresh-cut or minimally processed fruit and vege-
tables. The international Fresh-cut Produce Association (IFPA)
defines, in 1999, fresh-cut products as “any fruit or vegetable or
combination thereof that has been physically altered from its
original form, but remains in a fresh state” [1].

The growth in the ready to use vegetable industry is due to:
(i) their ease of use, in fact changes in human life styles have led

consumers to move towards ready-to-eat products and (ii) nutri-
tional properties indeed it is known as source of vitamins,
minerals, fiber and antioxidants [2].

Flavor (taste and aroma) quality of fruits and vegetables is
influenced by genetic, pre-harvest, harvesting, and postharvest
factors. The longer the time between harvest and eating, the
greater the losses of characteristic flavor and the development
of off-flavors in most fruits and vegetables. Postharvest life bas
ed on flavor and nutritional quality is shorter than that based on
appearance and textural quality [2]. Thus, it is essential that good
flavor quality be emphasized in the future by selecting the best-
tasting genotypes to produce, by using an integrated crop manage-
ment system and harvesting at the maturity or ripeness stage that
will optimize eating quality at the time of consumption, and by
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using the postharvest handling procedures that will maintain
optimal flavor and nutritional quality of fruits and vegetables
between harvest and consumption [2].

A critical aspect relevant for this type of products is repre-
sented by their actual shelf life since manipulations such as
cleaning, washing, trimming, peeling, cutting or slicing and
shredding increase the respiration rate and the ethylene produc-
tion, and cause perishability. These physiological changes may
result in degradation of color, texture, flavor and nutritional value
[3]. The shelf life of fresh cut products is shorter than that of
unprocessed vegetables [4], it is imposed from producer and
limited to 5–7 days for most leafy vegetables [5] in order to
assuring the good quality of products to consumers. Moreover,
temperature is the most important parameter particularly during
storage and throughout the distribution chain. In fact, all fresh-cut
items should be stored at 0–5 1C to preserving their quality and
prolonging the shelf life [6].

Several studies have been carried out to monitor and extend
the shelf life of fresh-cut fruit and vegetables. Color, texture,
respiration, microbiological indices, pH, sensory and nutritional
are the main parameters evaluated [2,3,7,8]. These conventional
methods are generally expensive, slow, require considerable ana-
lytical skill and are not suited to automation. Therefore rapid and
non-destructive methods to investigate the freshness decay of
fresh-cut vegetables, during or at the end of the distribution chain,
should be developed.

Among the various non-destructive systems electronic nose
(e-nose) stands out its ability to use the information contained in
the headspace of food. Torri et al. [9] used an electronic nose in
order to monitor the change in the volatile compounds of mini-
mally processed fresh-cut pineapple during storage at different
temperatures. Riva el al. used an e-nose equipped with MOSFET
and MOS sensors to evaluate the shelf-life of ready to use fresh cut
chicory and carrots [10]. Benedetti et al. [11] applied a commercial
electronic nose as a non-destructive tool to characterize peach
cultivars and to monitor their ripening stage during shelf-life.
Gomez et al. [12] monitored tomato storage shelf life during two
storage treatments using a commercial electronic nose.

The increasing importance of NIR spectroscopy in postharvest
technology is showed by the relevant growth of the number of
publications and the use of commercial on-line NIR systems for
grading products based on different quality attributes. Nicolai et al.
[13] overviewed NIR spectroscopy for measuring quality attributes
of fruit and vegetables. Francois et al. [14] predicted sensory
attributes of different chicory hybrids using physico-chemical
measurements and visible–near infrared (VIS–NIR) spectroscopy.
Sánchez et al. [15] proved that NIR spectroscopy, coupled with the
use of chemometric techniques, provides a reliable, accurate
method of predicting the shelf-life of asparagus under different
storage conditions and as a function of post-harvest treatment
applied.

The main objective of this preliminary study was to test e-nose
and VIS–NIR spectroscopy in order to detect the quality decay
of fresh-cut Valerianella locusta L. during storage at different
temperature. In particular, a commercial e-nose was used to moni-
tor changes in volatile compound during storage, and a VIS–
NIR device was applied in order to evaluate diffuse reflectance

modifications in visible–near infrared spectral range and correlate
the VIS–NIR spectra with the Valerianella quality parameters for
the elaboration of predictive chemometric models. These techni-
ques can be considered complementary and their combined use
could provide rapid information about the appearance, the che-
mical composition and the aroma profile of Valerianella. The
availability of a non-destructive instrument that allows to evaluate
changes during shelf life or estimate quality parameter may have
a wide number of practical applications in the production chain:
during the storage period before packaging, during production
process for identifying critical point and during distribution chain,
the worst critical phase. Furthermore, the possibility to implement
the non-destructive technology, for monitoring the freshness at
the point of sale, should be a guarantee for consumers.

2. Materials and methods

2.1. Sampling

V. locusta L. was harvested by hand in September 2012, under-
gone the minimal process [16], packed in sealed plastic (high-
density polyethylene) bag (capacity 100 g) and transported to the
laboratory the day of packaging (T0). The commercial expiration
date is fixed by the producer at 4 days from packaging.

Three storage temperatures were investigated: 4 1C, 10 1C and
20 1C; the relative humidity was 80%. The temperature of 4 1C
simulates the optimal shelf life condition of fresh-cut products [2].
The temperature of 20 1C simulates extreme conditions of storage,
at this temperature the physiological activities are accelerated. The
temperature of 10 1C can be considered as the most realistic
storage condition in the supermarket [17].

The measurements were performed for 16 days for samples
preserved at 4 and 10 1C, and for 7 days for samples stored at 20 1C
due to the rapid degradation of Valerianella at this temperature.
The experimental points were 10, 11 and 6 for 4 1C, 10 1C and 20 1C,
respectively; a total of 25 samples were collected (Table 1). Each
day of sampling Valerianella leaves from 3 bags were used for the
measurements.

2.2. Quality indices

Three chemical parameters and the chlorophyll a fluorescence
were considered indices of the quality decay of V. locusta L. during
shelf-life [18–20].

2.2.1. Chemical parameters
pH: Twenty grams of samples were blended for 2 min in 40 ml

of deionized water. The pH was measured using a digital pH meter
(Ioncheck 45, Radiometer Analytical SAS, Lyon, France).

Water content: A thermogravimetric analysis was carried out by
using a Sartorius MA150 (Bradford, UK) moisture analyzer. Ther-
mogravimetry is the process of determining the loss of mass that
occurs when a substance is heated. In this process, the sample
is weighed before and after being heated, and the difference
between the two weights is calculated. Five grams of samples
were directly weighed in the analyzer and heated at 120 1C until

Table 1
Sampling points during shelf life monitoring for 4 1C, 10 1C and 20 1C.

Days 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Shelf life 4 1C √ √ √ √ √ √ √ √ √ √
10 1C √ √ √ √ √ √ √ √ √ √ √
20 1C √ √ √ √ √ √
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reaching the constant weight. The water content was calculated as
g of water per 100 g of sample.

Total phenols: Ten grams of crushed samples were weighed in a
centrifuge tube and added with 15 mL of methanol. The mixture
was stirred for 1 h in the dark and centrifuged at 11,200 G for
10 min at 15 1C. The solids were extracted two more times using
15 and 10 mL of the extraction solvent for 15 min under shaking
in the dark, and centrifuged in the above-described conditions.
Finally, the gathered extracts were made up to 50 mL with
the extraction solvent. Total phenols were determined by the
Folin–Ciocalteau method [21] and expressed as mg of gallic acid
equivalents per 100 g of sample, by comparison with a calibration
curve built with the pure standard compound.

At each temperature and storage time all the chemical analysis
were carried out in triplicate.

2.2.2. Chlorophyll a fluorescence
Chlorophyll a fluorescence transients were measured using

a portable Handy Plant Efficiency Analyzer (PEA, Hansatech, UK).
A quantitative analysis of the O-J-I-P transient has been introduced
[22], named as the “JIP-test” after the basic steps of the transient,
by which several phenomenological and biophysical parameters
quantifying the Photosystem II (PSII) behavior are calculated.
Indices derived from JIP analysis were performed on the mean
data points, changed during storage for the three temperatures.
In Valerianella leaf vegetables stored at 4 1C, 10 1C and 20 1C, some
key parameters of chlorophyll a fluorescence and some derived
indices from the JIP test were able to describe the progression of
senescence and loss of product quality. Among JIP indices, the PI
(Performance Index) is a biophysical parameter useful in revealing
differences in the response of PSII to dark stored leafy vegetables.
This is the parameter that better highlighted the quality decay of
fresh-cut Valerianella samples, during shelf life [19].

The measurements were taken on the sample surface after
illumination with a light intensity (LED with maximum emission
peak at 650 nm) of 3000 μmol m�2 s�1 [20]. Every sampling date,
10 leaves were randomly taken from the stored packages and dark
adapted with leaf clips for 30 min before of the acquisition. The
average of the 10 measurements were used for the statistical
analysis. The spectral measurements were performed, for each
experimental point, on other 10 leaves taken simultaneously from
the same bag.

2.3. Non-destructive systems

2.3.1. Electronic nose
The e-nose measurements were performed by a commercial

portable electronic nose (PEN 2, Win Muster Airsens Analytic Inc.,
Schwerim, Germany). It consists of a sampling apparatus, a detector
unit containing the sensor array and pattern-recognition software
(Win Muster v.16) for data recording and elaboration. The sensor array
is composed of 10 Metal Oxide Semiconductor (MOS) sensors of
different chemical compositions and thicknesses to provide selectivity
towards volatile compounds as indicated by the instrument supplier:
W1C (aromatic compounds), W5S (broad-range compounds, polar
compounds, nitrogen oxides and ozone), W3C (ammonia, aromatic
compounds, aldehydes, and ketones),W6S (hydrogen), W5C (alkanes,
aromatic compounds, and less polar compounds), W1S (methane and
broad-range compounds), W1W (sulfur compounds, terpenes and
sulfur organic compounds), W2S (alcohols, partially aromatic com-
pounds, and ketones), W2W (aromatic compounds and sulfur organic
compounds) and W3S (methane). The sensor response is expressed as
resistivity (Ohm).

Five grams of V. locusta L. sample was placed in a 250 mL
airtight glass jar fitted with a pierceable Silicon/Teflon disk in the

cap. After 1 h equilibration at 2071 1C, the measurement started.
The sample headspace was pumped over the sensor surfaces for
60 s (injection time) at a flow rate of 300 mL min�1, during this
time the sensor signals were recorded. After sample analysis the
system was purged for 180 s with filtered air prior to the next
sample injection, to allow reestablishment of the instrument base
line. The sensor drift was evaluated by using a standard solution of
5% ethanol in distilled water included in each measurement cycle.
For all the experimental period no sensor drift was experienced. At
each temperature and storage time (depending on temperature),
three samples were analyzed and the average of the results was
used for the statistical analysis.

2.3.2. VIS–NIR spectroscopy
Spectral acquisitions were performed on leaves using a VIS–NIR

spectrophotometer (Jaz, OceanOptics, USA), which is an optical
portable system operating in the wavelength range of 400–
1000 nm. The Jaz equipment consists of five components: 1) a
VIS–NIR lighting system (halogen lamp), 2) a fiber optic probe for
reflection measurement, 3) a spectrophotometer, 4) hardware for
data acquisition and instrument control, and 5) a battery as the
power supply.

Spectra were acquired in reflectance mode: light radiation was
guided from the light source to the sample through a Y-shaped,
bidirectional fiber optic probe (OceanOptics, USA). The Y-shaped
fiber guided light from the halogen lamp to illuminate the sample
while simultaneously collecting the radiation coming from the leaf
and guiding it back to the spectrophotometer. The probe consists
of a tight bundle of 7 optical fibers in a stainless steel ferrule
(6 illumination fibers around 1 read fiber, each one with a dia-
meter of 600 mm). Since the leaf is very thin, a dark surface was
placed on the opposite side of the acquisition point. In this manner
the light which exceeded the leaf was completely absorbed by the
dark surface and only the reflected light was read.

The tip of the optical probe was equipped with a soft plastic cap
to ensure contact with sample0s skin during measurements, while
minimizing environmental light interference.

The integrated spectrophotometer was equipped with diffrac-
tive grating for spectral measurements optimized in the range
of 400–1000 nm and a CCD sensor with a 2048 pixel matrix,
corresponding to a spectral resolution of 0.3 nm.

Every sampling day, for each temperature, spectral measure-
ments on 10 leaves were carried out. Each sample was obtained by
averaging 3 spectral acquisitions in three different points of the
leaf. Each acquisition represent an average of 5 reflectance spectra.
A total of 750 spectra were acquired and 250 leaves (90 for 4 1C,
100 for 10 1C and 60 for 20 1C) were analyzed.

2.4. Data analysis

Cluster Analysis (CA) was performed on quality indices using
Minitab 16 software package.

CA is an exploratory data analysis tool for solving classification
problems. Its aim is to sort cases (people, things, events, etc.) into
groups, or clusters, so that the degree of association is strong
between members of the same cluster and weak between mem-
bers of different clusters. The hierarchy of clusters can be repre-
sented by a binary tree, called “dendrogram”. A final partition,
i.e. the cluster assignment of each object, is obtained by cutting the
tree at a specified similarity level. There are many subjective
choices to make in performing a cluster analysis, the linkage
method, the distance measure, the level of resolution or the
number of clusters has to be established on the basis of need
and circumstances [23]. In this work Ward0s method and the
Euclidian distance were used and four classes were identified.
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The e-nose data were analyzed by Principal Component Ana-
lysis (PCA) and Linear Discriminant Analysis (LDA) using Minitab
16 software package.

PCA is a linear and unsupervised procedure that permits useful
information to be extracted from the data, to explore the data
structure and the relationship between objects and the global
correlation of the variables [24].

LDA is one of the most widely used classification techniques.
The method is a probabilistic parametric classification technique
that maximizes the variance between categories and minimizes
the variance within categories, by means of a data projection from
a high dimensional space to a low dimensional space. In this way,
a number of orthogonal linear discriminant functions equal to the
number of categories minus one is obtained. The classification
model was validated using a leave-one-out procedure [25].

Chemometric analysis on VIS–NIR data was performed using
The Unscrambler software package (version 9.8, CAMO ASA, Oslo,
Norway).

Spectra (Fig. 1) were pre-processed using the Moving Average
smoothing (gap size 15 points corresponding to a window of
4.5 nm) and the first derivative Norris Gap transformation (gap
size 21 points). These treatments were applied to improve the
signal to noise ratio in order to reduce the effects due to the
physiological variability of samples [19].

A classification analysis using the PLS discriminant analysis
(PLS-DA) method was applied on the 250 average spectra. The
objective of PLS-DA is to find models that allow the maximum
separation among classes of objects [26]. PLS-DA accomplishes
a rotation of the projection to latent variables focusing on class
separation. A matrix of artificial (dummy) variables, assuming
a discrete numerical value (zero or one), was used as Y data. The
Y dummy matrix was constructed so that the value of the objects
belonging to the class was one, and the value of all other objects
was zero [27,28]. In this context, PLS-DA was carried out to assess
the evolution of the fresh-cut Valerianella during storage. Different
models were calibrated for each class obtained by CA performed
on the quality indices. Samples were split into calibration and
validation sets, assigning randomly 50% of samples for calibration
and 50% for validation [29]. In this study PLS-DA regression was
performed by using the PLS 2 model regression. The cut-off value
for PLS-DA discrimination was fixed at 0.5.

Finally, the VIS–NIR spectra were correlated with indices of
quality decay using the partial least square (PLS) regression
algorithm. The spectra acquired on 10 leaves for each sampling
day were averaged to obtain one mean spectrum for each
reference parameter value available. Hence, 25 samples were
used for the creation of the chemometric regression model for
each parameter considered. PLS is frequently used to understand

relationships between two data sets by predicting one data set
from the other [30].

PLS models were constructed using spectral data as predictive
variables X and the reference parameters (pH, water content,
polyphenols and PI) as variables to be predicted Y. Cross-validation,
an internal validation method usually used with a small number of
samples, was performed with five cancellation groups. To evaluate
model accuracy, the coefficient of determination in calibration (R2cal),
the root mean standard error of calibration (RMSEC), the coefficient
of determination in cross-validation (R2cv) and the root mean
standard error of cross-validation (RMSECV) and the Ratio Perfor-
mance Deviation (RPD) were applied. RMSECVwas calculated as the
root of the squared average deviation between predicted and
measured Y-values in validation [31]. The optimum calibrations
were selected based on minimizing the RMSECV. RPD is defined as
the ratio between the standard deviation of the response variable
and RMSECV [32,33]. The number of latent variables necessary to
achieve a minimal RMSECV was selected for the model.

To investigate the feasibility of a low-cost device based on few
selected wavelengths, Martens0 Uncertainty Test was applied. This
is a significance testing method to assess the stability of regression
results and the significance of selected X-variables [34,35].
The wavelength selection takes into account the top of the peaks
of the X regression coefficients plot deriving from the PLS regres-
sion [36].

3. Results and discussion

3.1. Quality indices

In Fig. 2 the evolution of chemical parameters investigated
during storage of V. locusta L. is reported.

Minimally processed vegetables belong to low-acid foods (pH:
5.8–6.0) and in general a pH value in the range of 5–6.5 is
considered adequate for quality retention [37]. Fig. 2A shows the
pH evolution of Valerianella samples stored at 4 1C, 10 1C and 20 1C.
At the beginning of shelf life (T0) the pH value was 6.1; during
storage a significant increase was observed after 3, 8 and 9 days at
20 1C, 10 1C and 4 1C, respectively. Moreover, the quality limit
(pH¼6.5) is exceeded after 3, 9 and 10 days of storage at 20 1C,
10 1C and 4 1C, respectively.

Fig. 2B shows the water content measured throughout the
storage at the three established temperatures. As reported in
literature for minimally processed lettuce [38], the moisture of
Valerianella samples changed few during storage; the decrease
after 7 days at 20 1C, 10 1C and 4 1C was of 0.85%, 0.79% and 0.74%,
respectively.

Results from the determination of total phenols are shown in
Fig. 2C. At the beginning of shelf life (T0) total phenolic concentra-
tion was of 300 mg 100 g�1. In the samples stored at 20 1C an
increment of 28% was observed during the first 4 days of storage.
A similar increment was observed after 7 days at 10 1C (32%) and
after 8 days at 4 1C (30%), then the decrease of the phenolic
content is probably due to their oxidation. Similar results were
obtained by Ke and Saltveit [39] and by Kang and Saltveit [40] that
observed a marked increment of the phenolic content and anti-
oxidant capacity of iceberg lettuce exposed to several kind of
stress (attack of pathogens, ethylene treatment) and after wound-
ing. Babic et al. [41] observed an increase of phenols in ready-to-
use carrots as a response to damage.

The evolution of PI is reported in Fig. 2D. The initial (T0) PI value
was about 4.14, a significant decrease to 1.46 (65%) and to 0.8 (81%)
was observed after 15 days for samples stored at 4 1C and 10 1C,
respectively. At 20 1C the PI value drastically declined, reaching
a value close to zero after 7 days. As expected, PI value for samples

Fig. 1. Average VIS–NIR spectra of Valerianella leaves at T0 and at the end of the
shelf life period for each temperature (after 16 days for 4 and 10 1C and after 7 days
for 20 1C).
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stored at 20 1C decreased rapidly due to the extreme conditions of
storage, indicating a decay in the efficiency of PSII photochemistry.
These results were in agreement with those reported by Baldas-
sarre et al. [20].

All data collected by the quality indices were elaborated by CA
in order to categorize Valerianella samples according to their
freshness and quality (Fig. 3). At a similarity level of 14.02 four
main groups were identified. The first cluster, classified as “fresh”,
included samples similar to T0 and stored for 1 day at 20 1C and for
2–3 days at 4 1C and 10 1C. The second cluster was classified as
“acceptable” and consisted of samples stored for a maximum of
3 days at 20 1C and for a maximum of 9 days at 4 1C and 10 1C. The
third and fourth clusters were classified as “spoiled” and “very
spoiled”, respectively, and consisted of samples that were no
longer acceptable considering the quality indices.

3.2. Non-destructive systems

The e-nose was applied in order to evaluate the evolution of
the aroma profile of Valerianella during storage. As a first step, in
order to evaluate the ability of the e-nose to differentiate samples
during shelf life, data were elaborated by PCA performed on
covariance matrix. Fig. 4 shows the PCA score plot (A) and loading
plot (B) in the plane defined by the first two Principal Components
(PC1 and PC2) accounted for 99.8% of the total variance. Examining
the PCA score-plot (Fig. 4A) a clear distribution of samples along
PC1 and PC2 according to the storage temperature and time was
found. In particular, samples stored at 10 1C and 4 1C for up to
3 and 9 days respectively, are located along PC1 at the left of the
plot and their aroma profile is similar to that of the fresh product
analyzed the day of packaging (T0). The samples stored for 10–15
days were differentiated along the PC2 and their aroma profile was
similar to that of samples stored for 3–4 days at 20 1C and for
10–11 days at 10 1C. A clear evolution of the aromatic profile of
samples stored at 20 1C is evident along PC1: after 3–4 days of
storage the aromatic fingerprint evolved rapidly, and sample
stored for 7 days, located at the right of the plot, was similar
to samples stored for 14–15 days at 10 1C. Considering the
PCA-loading plot (Fig. 4B), showing the relationship between the
e-nose sensors and how they influence the system, the W5S, W2S
and W1S sensors, characterized by broad range sensitivity and
sensitive to polar compounds, alcohols and ketones, had the
highest influence in the pattern file. In particular one sensor
(W5S) is relevant in the discrimination of Valerianella samples
along PC1 on the basis of their storage condition. This result is in
accordance with those reported in other studies concerning the
applicability of e-nose for evaluating apple, peach, mandarin and
tomato maturity. In all these works it was demonstrated that W5S
sensor was particularly relevant in monitoring changes in the
volatile profile of fruit and vegetables during shelf-life [11,42–44].

Fig. 2. Evolutions of chemical parameters (A¼pH; B¼water content; C¼total phenols; D¼Performance Index, PI), for each sampling date at 4 1C, 10 1C and 20 1C. Bars
indicate the standard error within each sampling date (n¼3).

Fig. 3. Dendrogram deriving from elaboration by CA in order to categorize
Valerianella samples according to their freshness and quality. Different line style
was used to identify the clusters.
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LDA was performed on e-nose data, in order to classify
Valerianella samples into the four clusters identified by CA. LDA
was applied considering all the variables and, subsequently, only
the three selected variables (W1S; W2S; W5S); the classification
matrix is reported in Table 2. LDA applied to the all the e-nose

variables gave a calibration error rate of 4.4% and a cross validation
error rate of 17.4%. Better classification results in validation were
obtained considering only the selected e-nose variables. The
average value of samples correctly classified was 95.5% and the
cross validation error rate was 8.7%. Although in literature there
are few works on e-nose applied to minimally processed vegeta-
bles, these results are in agreement with those published which
demonstrated that e-nose responses correlate well with classical
evaluation of vegetable spoilage and that e-nose is useful tool for
monitoring the shelf life of these products [9,10].

VIS–NIR spectral data were used for the elaboration of PLS-DA
classification models and PLS predictive models.

Results obtained by PLS-DA for classification of Valerianella
samples into the four clusters identified by CA are shown in
Table 3. The PLS-DA models were applied on calibration and on
validation sets. The results obtained from validation sets gave a
positive predictive value (PPV) of classification between 74% and
96%. In particular, very high PPV were obtained for the class
“fresh” and the class “very spoiled” with 94% and 96% of correctly
classified samples, respectively.

Table 4 shows descriptive statistics and the estimated PLS
regression coefficients for predicting quality indices of V. locusta
L. The more informative wavebands were selected by Martens0

Uncertainty Test and used for models calibration (Fig. 5). In recent
years, there has been a growing interest towards the development
of portable systems that could be used in pre- and post-harvest
[45–47]. The identification of the most significant bands can be
used as starting point for the selection of a few highly informative

Fig. 4. PCA scores plot (A) and loadings plot (B) deriving from e-nose data.

Table 2
LDA classification of Valerianella locusta L. samples considering all the e-nose variables and the selected variables (W1S, W2S, W5S).

Class Predicted class (%)

Fresh Acceptable Spoiled Very spoiled

All e-nose variables Calibration
Fresh 100 0 0 0
Acceptable 0 100 0 0
Spoiled 0 14.3 85.7 0
Very spoiled 0 0 0 100

Cross-validation
Fresh 80 20 0 0
Acceptable 0 90 10 0
Spoiled 0 40 60 0
Very spoiled 0 0 0 100

Selected e-nose variables Calibration
Fresh 100 0 0 0
Acceptable 9.1 90.9 0 0
Spoiled 0 0 100 0
Very spoiled 0 0 0 100

Cross-validation
Fresh 100 0 0 0
Acceptable 18.2 81.8 0 0
Spoiled 0 0 100 0
Very spoiled 0 0 0 100

Table 3
PLS-DA classification of Valerianella locusta L. samples based on the four clusters
identified by CA.

Class Calibration set (n¼125) Validation set (n¼125)

PPVcal % PPVcal PPVval % PPVval

Fresh 121/125 97 117/125 94
Acceptable 108/125 86 92/125 74
Spoiled 115/125 92 107/125 86
Very spoiled 118/125 94 120/125 96

PPVcal/val¼Positive predictive value of calibration or validation.
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wavelengths. These individual fingerprint wavelengths could be
used for the design of a simplified handheld device which would
allow real-time assessment of Valerianella freshness. Zhang et al.
[48] proposed a method to select 25 wavelengths for the estima-
tion of water content in ornamental plant leaves using VIS–NIR
spectroscopy. PLS model deriving from the full spectrum (200–
1100 nm) showed RPD equal to 3.66 while after the selection PLS
model gave an higher RPD value of 4.86. All the quality indices
estimated showed good calibration and validation statistics:
determination coefficients in validation (R2cv) ranging between

0.84 and 0.92 and RPD values higher than 2. In particular, RPD
values minor than 3 were obtained for water content (2.25) and
pH (2.54); a RPD value between 2 and 2.5 indicates that coarse
quantitative predictions are possible while a RPD value between
2.5 and 3 or above corresponds to good or excellent prediction
accuracy [13,32,33]. The prediction of PI (Fig. 5B) can be consid-
ered excellent (R2cv¼0.92, RPD¼3.22) and excellent results were
also obtained for total phenols (R2cv¼0.89 and RPD¼3.19).

4. Conclusions

A portable electronic nose and a portable VIS–NIR spectro-
photometer, operating in the range 400–1000 nm, were tested for
monitoring freshness decay of fresh-cut V. locusta L. during storage
at three different temperature (4 1C, 10 1C and 20 1C). CA was
performed on quality indices in order to categorize Valerianella
samples according to their freshness and four main groups were
identified. Classification and regression models were performed
on e-nose and VIS–NIR data. The e-nose was able to follow the
evolution of the aroma profile of Valerianella during storage. The
PCA-loading plot showed that three sensors, characterized by
broad range sensitivity and sensitive to polar compounds, alcohols
and ketones, had the highest influence in the pattern file. LDA
performed on e-nose data gave 95% of samples correctly classified.
PLS-DA classification models and PLS predictive models elaborated
on VIS–NIR spectral data gave good results and few selected
wavebands were identified to investigate the feasibility of a low-
cost device.

Results of the present work demonstrated that these techni-
ques can be proposed as rapid (compared with traditional labora-
tory analyses) and non-destructive methods to evaluate changes in
fresh-cut Valerianella during storage and the information provided
will be useful for managing the product during production and
along the distribution chain. Results are preliminary and a future
perspective is the implementation of these devices, equipped with
more robust predictive models, directly at the point of sale as a
guarantee, for the consumers, of the minimally processed product
quality. The instruments proved to be suitable not only for the
evaluation of quality parameters, but also for classification accord-
ing to the storage time. Therefore they could be used as a non-
destructive method for classification in homogeneous lots with
the purpose of a better management of the destination of lots
during the shelf-life in order to avoid fruit wastage. Moreover

Table 4
Descriptive statistics and statistics of the PLS models elaborated on VIS–NIR spectra to estimate qualitative decay parameters of Valerianella locusta L. and respective
wavebands selected.

Quality
parameters

No. of
samples

Range Mean SD Pretreatment LV Calibration model Validation model VIS–NIR regions
(nm)

R2
c RMSEC RPD R2

cv RMSECV RPD

pH 25 6.11–7.06 6.45 0.33 Smoothing Der2 5 0.93 0.09 3.67 0.86 0.13 2.54 510–522; 545–556;
582–598; 660–689;
698–713; 720–737;
752–793; 852–862; 913–917

Total phenols
(mg/g gallic acid eq)

25 201.1–386.6 267.0 40.3 5 0.96 7.38 5.46 0.89 12.64 3.19 515–526; 584; 586; 628–638; 647–688;
695–704; 755–768; 773; 774; 790–793

Water content (%) 25 93.02–93.87 93.38 0.27 3 0.85 0.1 2.70 0.84 0.12 2.25 496–519; 533–548; 564–581;
591–623; 638–665; 684–696;
707–753

PI (a.u.) 25 0.13–4.14 2.26 1.16 5 0.94 0.29 4.00 0.92 0.36 3.22 503–528; 543–550; 570;
580–593; 620–641; 656;
680–691; 698–715; 720–741;
757–761; 769–772; 803–805;
818–827; 874; 884–889;
896–912; 919–921; 923

LV¼Latent variables.

Fig. 5. Loadings plot with highlighted the selected variables by Martens0 Uncer-
tainty Test (A) and graph of PLS model for PI prediction (B).
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e-nose and VIS–NIR can be mutually complementary and used in
combination. A simplified systems based on few e-nose and VIS–
NIR variables can be foreseen providing rapid information about
the appearance, the chemical composition and the aroma profile of
Valerianella.
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